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1
PRESERVING CONCEPTUAL DISTANCE
WITHIN UNSTRUCTURED DOCUMENTS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates in general to the field of
computers and similar technologies, and in particular to soft-
ware utilized in this field. Still more particularly, it relates to
a method, system and computer-usable medium for preserv-
ing conceptual distance within unstructured documents.

2. Description of the Related Art

Many unstructured documents have an inherent hierarchy
that implicitly transfers information throughout the docu-
ment. However, processing such documents as a flat file typi-
cally loses conceptual distance and information inherited
from sections that are higher in the hierarchy. For example,
the text alignment of a document with a title and three con-
secutive sections would result a textual distance value of <17,
‘2’ and ‘3’ between the title and the first, second and third
sections. However, the conceptual distance value between the
title and each of the three sections would be ‘1, as each of the
sections is conceptually related to the title. Additionally, tex-
tual alignment fails to take into account conceptual similari-
ties of linked passages to other documents, or sections of
documents, which would likewise have a conceptual distance
value of ‘1’ from the title of the original document. While
such passages may be linked through a hyperlink, this data is
typically lost or stripped out by most parsers.

Furthermore, many passage similarity metrics currently
use textual distance instead of distance between passages,
which incorrectly scores passages at the end of a document as
less relevant than those that are near the beginning. Moreover,
when someone attempts to use a passage, they are generally
confined to only seeing what is in the passage itself as inher-
ited conceptual information from parent sections and headers
is unavailable, which reduces relevance and informativeness.
Other known approaches to this issue include table of content
(TOC) generators, which can parse the markup of a single
annotated document into a tree structure. However, such
approaches do not allow for conceptual cycles, maintaining
inter-document relationships, or the implementation of more
sophisticated partitioning algorithms.

Another issue related to conceptual distance is determining
how to split a training corpus into different entities, such as
terms, documents, concepts, and so forth. Current distribu-
tional semantic methods, such as latent semantic analysis
(LSA) and random indexing, use a static definition of what
each of these entities should be. The definitions are then used
to generate a matrix, which in turn is converted into a vector-
space model using techniques such as singular value decom-
position (SVD). Certain methods, such as LSA, use a term-
document matrix in which documents are collections of text
and terms are some subset of that text. This methodology
finds inherent similarities in terms by their contexts within
documents. However, the definitions they use can affect the
relevance and usefulness of the generated model. Further-
more, many vector space models suffer from improper docu-
ment length, providing too little or too much information, and
words matching or not matching the appropriate values in the
model. These models also treat documents as a collection of
words and therefore lose sentence context information.

SUMMARY OF THE INVENTION

A method, system and computer-usable medium are dis-
closed for preserving conceptual distance within unstructured
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2

documents. In various embodiments, the content of a plurality
of' documents is characterized by conceptual relationships. In
these embodiments, natural language processing (NLP) is
applied to the content to identify topics and subjects. In turn,
analytic analysis is applied to the identified topics and sub-
jects to identify concepts. The content in each of the plurality
of documents is partitioned into a first structured hierarchy,
preserving at least one structure in each document inherent in
the each document. Access is then provided to the content
through a first index based upon utilizing the first structured
hierarchy and through a second index utilizing a second struc-
tured hierarchy. In various embodiments, the conceptual rela-
tionships are based upon a directed graph with weights based
upon a similarity and a distance based upon concepts. In
certain embodiments, the distance is based upon a topic hier-
archy.

In various embodiments, the content is characterized by
optimizing a vector space model representation of the docu-
ments. In certain embodiments, the optimization is performed
by a system capable of answering questions. In these embodi-
ments, the content from the plurality of documents is first
ingested by the system, followed by applying NLP to the
content to identify terms, topics, subjects and concepts. The
content is partitioned according to a semantic parse distance
to identify a context for partitioned content. In turn, a vector
space model is implemented to represent the content and
context. Entries in the vector space model are then eliminated
based, upon a difference criteria, followed by the application
of an iterative genetic algorithm optimize features of the
vector space model.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings. The use of the same reference number throughout
the several figures designates a like or similar element.

FIG. 1 depicts an exemplary client computer in which the
present invention may be implemented;

FIG. 2 is a simplified block diagram of an information
handling system capable of performing computing opera-
tions

FIG. 3 depicts a corpus of unstructured documents imple-
mented to preserve conceptual distance;

FIG. 4 is a generalized flowchart of the performance of
vector space model operations; and

FIG. 5 is a generalized flowchart of the performance of
conceptual distance preservation operations.

DETAILED DESCRIPTION

A method, system and computer-usable medium are dis-
closed for preserving conceptual distance within unstructured
documents. The present invention may be a system, a method,
and/or a computer program product. In addition, selected
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and/or hardware
aspects that may all generally be referred to herein as a “cir-
cuit,” “module” or “system.” Furthermore, aspects of the
present invention may take the form of computer program
productembodied in a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.
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The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a dynamic or
static random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a magnetic storage device, a
portable compact disc read-only memory (CD-ROM), a digi-
tal versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Java, Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software pack-
age, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server or
cluster of servers. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider). In some embodiments, electronic
circuitry including, for example, programmable logic cir-
cuitry, field-programmable gate arrays (FPGA), or program-
mable logic arrays (PLA) may execute the computer readable
program instructions by utilizing state information of the
computer readable program instructions to personalize the
electronic circuitry, in order to perform aspects of the present
invention.
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4

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of instructions, which comprises one or more executable
instructions for implementing the specified logical
function(s). In some alternative implementations, the func-
tions noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of'the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hardware
and computer instructions.

FIG. 1 depicts a schematic diagram of one illustrative
embodiment of a question prioritization system 10 and ques-
tion/answer (QA) system 100 connected to a computer net-
work 140. The QA system 100 includes a knowledge manager
104 that is connected to a knowledge base 106 and configured
to provide question/answer (QA) generation functionality for
one or more content users who submit across the network 140
to the QA system 100. To assist with efficient sorting and
presentation of questions to the QA system 100, the prioriti-
zation system 10 may be connected to the computer network
140 to receive user questions, and may include a plurality of
subsystems which interact with cognitive systems, like the
knowledge manager 100, to prioritize questions or requests
being submitted to the knowledge manager 100.
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The Named Entity subsystem 12 receives and processes
each question 11 by using natural language (NL) processing
to analyze each question and extract question topic informa-
tion contained in the question, such as named entities,
phrases, urgent terms, and/or other specified terms which are
stored in one or more domain entity dictionaries 13. By lever-
aging a plurality of pluggable domain dictionaries relating to
different domains or areas (e.g., travel, healthcare, electron-
ics, game shows, financial services), the domain dictionary 11
enables critical and urgent words (e.g., “threat level”) from
different domains (e.g., “travel”) to be identified in each
question based on their presence in the domain dictionary 11.
To this end, the Named Entity subsystem 12 may use a Natu-
ral Language Processing (NLP) routine to identify the ques-
tion topic information in each question. As used herein,
“NLP” refers to the field of computer science, artificial intel-
ligence, and linguistics concerned with the interactions
between computers and human (natural) languages. In this
context, NLP is related to the area of human-computer inter-
action and natural language understanding by computer sys-
tems that enable computer systems to derive meaning from
human or natural language input. For example, NLP can be
used to derive meaning from a human-oriented question such
as, “What is tallest mountain in North America?” and to
identify specified terms, such as named entities, phrases, or
urgent terms contained in the question. The process identifies
key terms and attributes in the question and compares the
identified terms to the stored terms in the domain dictionary
13.

The Question Priority Manager subsystem 14 performs
additional processing on each question to extract question
context information 15A. In addition or in the alternative, the
Question Priority Manager subsystem 14 may also extract
server performance information 15B for the question priori-
tization system 10 and/or QA system 100. In selected
embodiments, the extracted question context information
15A may include data that identifies the user context and
location when the question was submitted or received. For
example, the extracted question context information 5A may
include data that identifies the user who submitted the ques-
tion (e.g., through login credentials), the device or computer
which sent the question, the channel over which the question
was submitted, the location of the user or device that sent the
question, any special interest location indicator (e.g., hospi-
tal, public-safety answering point, etc.), or other context-
related data for the question. The Question Priority Manager
subsystem 14 may also determine or extract selected server
performance data 15B for the processing of each question. In
selected embodiments, the server performance information
15B may include operational metric data relating to the avail-
able processing resources at the question prioritization sys-
tem 10 and/or QA system 100, such as operational or run-time
data, CPU utilization data, available disk space data, band-
width utilization data, etc. As part of the extracted informa-
tion 15A/B, the Question Priority Manager subsystem 14 may
identify the SLA or QoS processing requirements that apply
to the question being analyzed, the history of analysis and
feedback for the question or submitting user, and the like.
Using the question topic information and extracted question
context and/or server performance information, the Question
Priority Manager subsystem 14 is configured to populate
feature values for the Priority Assignment Model 16 which
provides a machine learning predictive model for generating
a target priority values for the question, such as by using an
artificial intelligence (Al) rule-based logic to determine and
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6

assign a question urgency value to each question for purposes
of'prioritizing the response processing of each question by the
QA system 100.

The Prioritization Manager subsystem 17 performs addi-
tional sort or rank processing to organize the received ques-
tions based on at least the associated target priority values
such that high priority questions are put to the front of a
prioritized question queue 18 for output as prioritized ques-
tions 19. In the question queue 18 of the Prioritization Man-
ager subsystem 17, the highest priority question is placed at
the front for delivery to the assigned QA system 100. In
selected embodiments, the prioritized questions 19 from the
Prioritization Manager subsystem 17 that have a specified
target priority value may be assigned to a specific pipeline
(e.g., QA System 100A) in the QA system cluster 100. As will
be appreciated, the Prioritization Manager subsystem 17 may
use the question queue 18 as a message queue to provide an
asynchronous communications protocol for delivering priori-
tized questions 19 to the QA system 100 such that the Priori-
tization Manager subsystem 17 and QA system 100 do not
need to interact with a question queue 18 at the same time by
storing prioritized questions in the question queue 18 until the
QA system 100 retrieves them. In this way, a wider asynchro-
nous network supports the passing of prioritized questions as
messages between different computer systems 100A, 100B,
connecting multiple applications and multiple operating sys-
tems. Messages can also be passed from queue to queue in
order for a message to reach the ultimate desired recipient. An
example of a commercial implementation of such messaging
software is IBM’s WebSphere MQ (previously MQ Series).
In selected embodiments, the organizational function of the
Prioritization Manager subsystem 17 may be configured to
convert over-subscribing questions into asynchronous
responses, even if they were asked in a synchronized fashion.

The QA system 100 may include one or more QA system
pipelines 100A, 100B, each of which includes a computing
device 104 (comprising one or more processors and one or
more memories, and potentially any other computing device
elements generally known in the art including buses, storage
devices, communication interfaces, and the like) for process-
ing questions received over the network 140 from one or more
users at computing devices (e.g., 110, 120, 130) connected
over the network 140 for communication with each other and
with other devices or components via one or more wired
and/or wireless data communication links, where each com-
munication link may comprise one or more of wires, routers,
switches, transmitters, receivers, or the like. In this networked
arrangement, the QA system 100 and network 140 may
enable question/answer (QA) generation functionality for
one or more content users. Other embodiments of QA system
100 may be used with components, systems, sub-systems,
and/or devices other than those that are depicted herein.

In each QA system pipeline 100A, 100B, a prioritized
question 19 is received and prioritized for processing to gen-
erate an answer 20. In sequence, prioritized questions 19 are
dequeued from the shared question queue 18, from which
they are dequeued by the pipeline instances for processing in
priority order rather than insertion order. In selected embodi-
ments, the question queue 18 may be implemented based on
a “priority heap” data structure. During processing within a
QA system pipeline (e.g., 100A), questions may be split into
many subtasks which run concurrently. A single pipeline
instance can process a number of questions concurrently, but
only a certain number of subtasks. In addition, each QA
system pipeline may include a prioritized queue (not shown)
to manage the processing order of these subtasks, with the
top-level priority corresponding to the time that the corre-
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sponding question started (earliest has highest priority).
However, it will be appreciated that such internal prioritiza-
tion within each QA system pipeline may be augmented by
the external target priority values generated for each question
by the Question Priority Manager subsystem 14 to take pre-
cedence or ranking priority over the question start time. In this
way, more important or higher priority questions can “fast
track” through the QA system pipeline if it is busy with
already-running questions.

In the QA system 100, the knowledge manager 104 may be
configured to receive inputs from various sources. For
example, knowledge manager 104 may receive input from the
question prioritization system 10, network 140, a knowledge
base or corpus of electronic documents 106 or other data, a
content creator 108, content users, and other possible sources
of'input. In selected embodiments, some or all of the inputs to
knowledge manager 104 may be routed through the network
140 and/or the question prioritization system 10. The various
computing devices (e.g., 110,120,130, 150,160, 170) on the
network 140 may include access points for content creators
and content users. Some of the computing devices may
include devices for a database storing the corpus of data as the
body of information used by the knowledge manager 104 to
generate answers to cases. The network 140 may include
local network connections and remote connections in various
embodiments, such that knowledge manager 104 may operate
in environments of any size, including local and global, e.g.,
the Internet. Additionally, knowledge manager 104 serves as
a front-end system that can make available a variety of knowl-
edge extracted from or represented in documents, network-
accessible sources and/or structured data sources. In this
manner, some processes populate the knowledge manager
with the knowledge manager also including input interfaces
to receive knowledge requests and respond accordingly.

In one embodiment, the content creator creates content in a
document 106 for use as part of a corpus of data with knowl-
edge manager 104. The document 106 may include any file,
text, article, or source of data (e.g., scholarly articles, dictio-
nary definitions, encyclopedia references, and the like) for
use in knowledge manager 104. Content users may access
knowledge manager 104 via a network connection or an Inter-
net connection to the network 140, and may input questions to
knowledge manager 104 that may be answered by the content
in the corpus of data. As further described below, when a
process evaluates a given section of a document for semantic
content, the process can use a variety of conventions to query
it from the knowledge manager. One convention is to send a
well-formed question. Semantic content is content based on
the relation between signifiers, such as words, phrases, signs,
and symbols, and what they stand for, their denotation, or
connotation. In other words, semantic content is content that
interprets an expression, such as by using Natural Language
(NL) Processing. In one embodiment, the process sends well-
formed questions (e.g., natural language questions, etc.) to
the knowledge manager. Knowledge manager 104 may inter-
pret the question and provide a response to the content user
containing one or more answers to the question. In some
embodiments, knowledge manager 104 may provide a
response to users in a ranked list of answers.

In some illustrative embodiments, QA system 100 may be
the IBM Watson™ QA system available from International
Business Machines Corporation of Armonk, N.Y., which is
augmented with the mechanisms of the illustrative embodi-
ments described hereafter. The IBM Watson™ knowledge
manager system may receive an input question which it then
parses to extract the major features of the question, that in turn
are then used to formulate queries that are applied to the
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corpus of data. Based on the application of the queries to the
corpus of data, a set of hypotheses, or candidate answers to
the input question, are generated by looking across the corpus
of data for portions of the corpus of data that have some
potential for containing a valuable response to the input ques-
tion.

The IBM Watson™ QA system then performs deep analy-
sis on the language of the input prioritized question 19 and the
language used in each of the portions of the corpus of data
found during the application of the queries using a variety of
reasoning algorithms. There may be hundreds or even thou-
sands of reasoning algorithms applied, each of which per-
forms different analysis, e.g., comparisons, and generates a
score. For example, some reasoning algorithms may look at
the matching of terms and synonyms within the language of
the input question and the found portions of the corpus of
data. Other reasoning algorithms may look at temporal or
spatial features in the language, while others may evaluate the
source of the portion of the corpus of data and evaluate its
veracity.

The scores obtained from the various reasoning algorithms
indicate the extent to which the potential response is inferred
by the input question based on the specific area of focus of
that reasoning algorithm. Fach resulting score is then
weighted against a statistical model. The statistical model
captures how well the reasoning algorithm performed at
establishing the inference between two similar passages for a
particular domain during the training period of the IBM Wat-
son™ QA system. The statistical model may then be used to
summarize a level of confidence that the IBM Watson™ QA
system has regarding the evidence that the potential response,
i.e. candidate answer, is inferred by the question. This process
may be repeated for each of the candidate answers until the
IBM Watson™ QA system identifies candidate answers that
surface as being significantly stronger than others and thus,
generates a final answer, or ranked set of answers, for the
input question. The QA system 100 then generates an output
response or answer 20 with the final answer and associated
confidence and supporting evidence. More information about
the IBM Watson™ QA system may be obtained, for example,
from the IBM Corporation website, IBM Redbooks, and the
like. For example, information about the IBM Watson™ QA
system can be found in Yuan et al., “Watson and Healthcare,”
IBM developerWorks, 2011 and “The Era of Cognitive Sys-
tems: An Inside Look at IBM Watson and How it Works™ by
Rob High, IBM Redbooks, 2012.

Types of information processing systems that can utilize
QA system 100 range from small handheld devices, such as
handheld computer/mobile telephone 110 to large mainframe
systems, such as mainframe computer 170. Examples of
handheld computer 110 include personal digital assistants
(PDAs), personal entertainment devices, such as MP3 play-
ers, portable televisions, and compact disc players. Other
examples of information processing systems include pen, or
tablet, computer 120, laptop, or notebook, computer 130,
personal computer system 150, and server 160. As shown, the
various information processing systems can be networked
together using computer network 140. Types of computer
network 140 that can be used to interconnect the various
information processing systems include Local Area Net-
works (LLANs), Wireless Local Area Networks (WL AN5), the
Internet, the Public Switched Telephone Network (PSTN),
other wireless networks, and any other network topology that
can be used to interconnect the information processing sys-
tems. Many of the information processing systems include
nonvolatile data stores, such as hard drives and/or nonvolatile
memory. Some of the information processing systems may
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use separate nonvolatile data stores (e.g., server 160 utilizes
nonvolatile data store 165, and mainframe computer 170 uti-
lizes nonvolatile data store 175). The nonvolatile data store
can be a component that is external to the various information
processing systems or can be internal to one of the informa-
tion processing systems. An illustrative example of an infor-
mation processing system showing an exemplary processor
and various components commonly accessed by the proces-
sor is shown in FIG. 2.

FIG. 2 illustrates an information processing system 202,
more particularly, a processor and common components,
which is a simplified example of a computer system capable
of performing the computing operations described herein.
Information processing system 202 includes a processor unit
204 that is coupled to a system bus 206. A video adapter 208,
which controls a display 210, is also coupled to system bus
206. System bus 206 is coupled via a bus bridge 212 to an
Input/Output (I/O) bus 214. An /O interface 216 is coupled to
1/0 bus 214. The I/O interface 216 affords communication
with various I/O devices, including a keyboard 218, a mouse
220, a Compact Disk—Read Only Memory (CD-ROM) drive
222, a floppy disk drive 224, and a flash drive memory 226.
The format of the ports connected to /O interface 216 may be
any known to those skilled in the art of computer architecture,
including but not limited to Universal Serial Bus (USB) ports.

The information processing system 202 is able to commu-
nicate with a service provider server 252 via a network 228
using a network interface 230, which is coupled to system bus
206. Network 228 may be an external network such as the
Internet, or an internal network such as an Ethernet Network
or a Virtual Private Network (VPN). Using network 228,
client computer 202 is able to use the present invention to
access service provider server 252.

A hard drive interface 232 is also coupled to system bus
206. Hard drive interface 232 interfaces with a hard drive 234.
Ina preferred embodiment, hard drive 234 populates a system
memory 236, which is also coupled to system bus 206. Data
that populates system memory 236 includes the information
processing system’s 202 operating system (OS) 238 and soft-
ware programs 244.

OS 238 includes a shell 240 for providing transparent user
access to resources such as software programs 244. Gener-
ally, shell 240 is a program that provides an interpreter and an
interface between the user and the operating system. More
specifically, shell 240 executes commands that are entered
into a command line user interface or from a file. Thus, shell
240 (as it is called in UNIX®), also called a command pro-
cessor in Windows®, is generally the highest level of the
operating system software hierarchy and serves as a com-
mand interpreter. The shell provides a system prompt, inter-
prets commands entered by keyboard, mouse, or other user
input media, and sends the interpreted command(s) to the
appropriate lower levels of the operating system (e.g., a ker-
nel 242) for processing. While shell 240 generally is a text-
based, line-oriented user interface, the present invention can
also support other user interface modes, such as graphical,
voice, gestural, etc.

As depicted, OS 238 also includes kernel 242, which
includes lower levels of functionality for OS 238, including
essential services required by other parts of OS 238 and
software programs 244, including memory management, pro-
cess and task management, disk management, and mouse and
keyboard management. Software programs 244 may include
a browser 246 and email client 248. Browser 246 includes
program modules and instructions enabling a World Wide
Web (WWW)client (i.e., information processing system 202)
to send and receive network messages to the Internet using
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HyperText Transfer Protocol (HTTP) messaging, thus
enabling communication with service provider server 252. In
various embodiments, software programs 244 may also
include a conceptual distance preservation system 250. In
these and other embodiments, the conceptual distance pres-
ervation system 250 includes code for implementing the pro-
cesses described hereinbelow. In one embodiment, informa-
tion processing system 202 is able to download the
conceptual distance preservation system 250 from a service
provider server 252.

The hardware elements depicted in the information pro-
cessing system 202 are not intended to be exhaustive, but
rather are representative to highlight components used by the
present invention. For instance, the information processing
system 202 may include alternate memory storage devices
such as magnetic cassettes, Digital Versatile Disks (DVDs),
Bernoulli cartridges, and the like. These and other variations
are intended to be within the spirit, scope and intent of the
present invention.

FIG. 3 depicts a corpus of unstructured documents imple-
mented in accordance with an embodiment of the invention to
preserve conceptual distance. In various embodiments, a topi-
cal graph is generated from a corpus of unstructured docu-
ments, such as unstructured documents ‘A’ 302 and ‘B’ 304.
In these embodiments, the resulting topical graph preserves
conceptual distance between various partitions of a document
and to partitions in other documents, as well as inheriting
information from parent sections and headers.

As used herein, conceptual distance broadly refers to a
measure of how closely two concepts are related (i.e., a con-
ceptual relationship between the concepts). As such, the abil-
ity to quantify the conceptual distance between two concepts
assists in determining how similar, or different, they may be.
Skilled practitioners of the arts will be aware that current
approaches to determining conceptual distance include the
use of query terms, also known as document relevance. How-
ever, such approaches do not compare the terms or concepts
themselves to determine how close they are and which are
closest to one another.

In various embodiments, the conceptual distance informa-
tion provided by the topic graph can be used for passage
search and scoring. For example, passage searching is
improved by the ability to find links to other documents and
by including more contextual information through inherit-
ance. Passage scoring is likewise improved by increased
alignment and relevance through inherited information. In
various embodiments, clarifying and descriptive features are
attached to terms and documents when generating a matrix,
which in turn is used for generating vector-space models. In
these embodiments, a machine learning method is then used
to learn which features are important for producing a trust-
worthy model. In certain embodiments, the resulting model is
measured to create a reference standard for how closely dif-
ferent entities should be related.

In this embodiment, the corpus includes unstructured
documents ‘A’302 and ‘B’ 304, which respectively have a title
‘A7 304 and ‘B;’ 324. As shown in FIG. 3, unstructured
document ‘A’ 302 has sections ‘Ag,* 306, ‘Ag,’ 308, and ‘A’
310, while unstructured document ‘B’ 322 has sections ‘B’
326, ‘Bs," 328, ‘Bs;°330 and ‘Bg,’ 332. As likewise shown in
FIG. 3, the distance relationship between title ‘A, 304 and
sections A’ 306, ‘Ag,” 308, and ‘Ag;’ 310 within unstruc-
tured document ‘A’ 302 is respectively represented by dis-
tance metrics 316, 318, and 320.

Skilled practitioners of the art will recognize that the dis-
tance metrics 316, 318, and 320 respectively represent pro-
gressively lower textual distance values between title ‘A’
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304 and sections ‘Ag,” 306, ‘A, 308, and ‘Ag;’ 310. How-
ever, the distance metrics 316, 318, and 320 respectively
represent the same conceptual distance weight value between
title ‘A;” 304 and sections ‘Ag,’ 306, ‘Ag,” 308, and ‘A;° 310.
Likewise, as shown in FIG. 3, section ‘Ag,’ 308 in unstruc-
tured document ‘A’ 302 is linked 342 to section ‘Bg,;” 326 of
unstructured document ‘B’ 322. Those of skill in the art will
likewise realize that the textual distance weight value repre-
sented by distance metric 344 between title ‘A’ 304 and
section ‘Bg, 326 is lower than the conceptual distance weight
value between title ‘A’ 304 and section ‘Bg,’ 326 when
sections ‘Ag,” 308 and ‘Bg,’ 326 are synonymous.

As an example, title ‘A, 304 of unstructured document ‘A’
302 may be “Notable Mustangs from the Muscle Car Era,”
with sections ‘Ag,” 306, ‘A;,’ 308, and ‘A, 310 respectively
containing content related to the “1964 289 V8,” “1968 390
fastback,” and “1970 Boss 302 Mustang” models. To con-
tinue the example, section ‘B, > 326 may contain information
regarding various options available for the “1968 390 fast-
back” Mustang model. As a result, since the content con-
tained in sections ‘A’ 306 and ‘B, 326 are synonymous,
the conceptual distance weight value represented by the dis-
tance metric 344 between title ‘A’ 304 and section ‘Bg,’ 326
is higher than the corresponding textual distance value.

In various embodiments, preserving conceptual distance
between titles (e.g., title ‘A;” 304) and sections within the
same document (e.g., sections ‘Ag,” 306, ‘Ag,” 308, and
‘Ag;’), and sections in linked documents (e.g., section ‘B’
326) is begun by first selecting a target corpus of files. Inthese
and other embodiments, the target corpus of files is selected
from a set of one or more flat files that have been generated by
processing one or more unstructured documents, such as
unstructured documents ‘A’ 302 and ‘B’ 304.

In various embodiments, known sentence boundary disam-
biguation (SBD) approaches are then used to break the target
corpus of files into individual sentences. Skilled practitioners
of the art will be familiar with SBD, also known as sentence
breaking, which addresses the challenge in natural language
processing (NLP) of determining where sentences begin and
end. In particular, many NLP tools require their input to be
divided into sentences because punctuation marks are often
ambiguous. For example, a period may not denote the end of
a sentence, but instead an abbreviation, a decimal point, an
ellipsis, or an email address. Furthermore, question marks,
exclamation marks, and other punctuation may appear in
embedded quotations, emoticons, computer code, and slang.
The particular method of SBD used to parse the target corpus
of files into individual sentences is a matter of design choice.

Contiguous sentences resulting from the preceding opera-
tions are then grouped into documents. In various embodi-
ments, the grouping is performed using a predetermined,
uniform document length. The method by which the uniform
document length is determined is a matter of design choice. In
certain embodiments, as described in greater detail herein,
conceptual distance is preserved in the resulting documents
by inheriting information from parent sections (e.g., titles
‘A7 304 and ‘B, 324). It will be appreciated that the preser-
vation of conceptual distance is advantageous when the
resulting documents are large. It will likewise be appreciated
that various iterations of the grouping operations may require
the method of grouping to be modified. The method by which
the method of grouping is modified is a matter of design
choice.

The documents resulting from the preceding operations are
then processed to generate associated metadata. In various
embodiments, the associated metadata may include the num-
ber of sentences, the number of paragraphs, the number of
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text segments larger than a paragraph (e.g., a section), the
number of topics, the number of terms, or some combination
thereof. In certain embodiments, the method by which the
topics are extracted, and the number of terms that are
extracted, is a matter of design choice.

The metadata generated in the preceding operations is then
respectively associated with its corresponding document.
Each of these documents is then parsed to generate a corre-
sponding parse tree. In certain embodiments, a parser such as
XSG, available from International Business Machines, of
Armonk, N.Y., or StanfordNLP, is used to perform the pars-
ing. The method by which each document is parsed is a matter
of design choice. Named entities are then identified within
each document and merged into its corresponding parse tree.
As used herein, named-entity identification, also known as
named entity recognition (NER), entity chunking, and entity
extraction, broadly refers to an aspect of information extrac-
tion that seeks to locate and classify elements in text into
pre-defined categories such as the names of persons, organi-
zations, locations, expressions of times, quantities, monetary
values, percentages, and so forth. The method by which the
named entities are identified and merged into the parse trees is
a matter of design choice.

Synsets are identified and resolved for nodes within each
parse tree. As used herein, a synset, also known as a synonym
set or synonym ring, broadly refers to a set of one or more
synonyms that are interchangeable in some context without
changing the truth value of the proposition in which they are
embedded. Accordingly, a synset likewise refers to a group of
data elements that are considered semantically equivalent for
the purposes of information retrieval. Skilled practitioners of
the art will be aware that such data elements are frequently
found in various metadata registries, which store the syn-
onyms at a central location referred to as the preferred data
element.

In various embodiments, the synsets are identified and
resolved through the implementation of an external resource,
such as Wordnet. Those of skill in the art will likewise be
familiar with WordNet, which is a lexical database for the
English language. WordNet groups English words into
synsets, provides short definitions and usage examples, and
records a number of relations among these sets of synonyms
or their respective members. As such, WordNet can be con-
sidered a combination of dictionary and thesaurus that is
accessible for use by automated text analysis and artificial
intelligence applications, or alternatively, by human users via
a web browser. The method by which the synsets are identi-
fied and resolved is a matter of design choice.

Terms are then identified as nodes in each parse tree, along
with associated distinguishing factors, such as its part of
speech, lemma, and synset. As used herein a term refers to
words and compound words whose meaning is dependent
upon the context in which they are used. The identified terms
are then used to generate a term-document matrix. As used
herein, a term-document matrix, also known as a document-
term matrix, refers to amathematical matrix that describes the
frequency of terms that occur in a collection of documents,
such as unstructured documents ‘A’ 302 and ‘B’ 304. In vari-
ous embodiments, the distinguishing factors of the previ-
ously-identified terms are used in counting operations to gen-
erate the term-document matrix. In certain embodiments,
inter-term counts are added, using inverted parse tree distance
to maintain the relevance of contextual co-occurrences. In
these embodiments, each cell in the term-document matrix
will have the number of occurrences of the term in that docu-
ment. In various embodiments, the document list includes an
entry for each term to account for co-occurrences.
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In certain embodiments, a genetic algorithm is imple-
mented to optimize various features and values to determine
an optimal term-document matrix generation method. As
used herein, a genetic algorithm refers to a search heuristic
that mimics the process of natural selection. This heuristic,
also known as a metaheuristic, is commonly used to generate
solutions to optimization and search problems. Those of skill
in the art will be aware that genetic algorithms belong to the
larger class of evolutionary algorithms, which generate solu-
tions to optimization problems using techniques inspired by
natural evolution, such as inheritance, mutation, selection,
and crossover. In certain embodiments, the genetic algorithm
is implemented to manipulate various values for additional
term-document matrix generation iterations. In these
embodiments, the various values may include which entity
features are ingested and processed when generating a space
vector model, the weighting of semantic distance, high and
low threshold values for pruning (i.e., eliminating) rows and
columns, or some combination thereof.

The term-document matrix is then cleaned. In various
embodiments, the cleaning of the term-document includes
ensuring that the sum of any row does not exceed a predeter-
mined maximum threshold number of stop words, does not
fall below a predetermined minimum threshold number of
terms that have no impact, or a combination of the two. In
certain embodiments, the cleaning includes removing any
columns having more than a maximum, or less than a mini-
mum, number of values. In various embodiments, duplicate
columns are identified and only one is retained.

The cleaned term-document matrix is then ingested and
processed to generate a vector space model. As used herein, a
vector space model, also known as a term vector model, refers
to an algebraic model for representing text documents, or
objects in general, as vectors of identifiers, such as index
terms. Skilled practitioners of the art will be familiar with
various uses for vector space models, such as information
filtering, retrieval and indexing, as well as for relevancy rank-
ings. In various embodiments, singular value decomposition
(SVD) approaches know to those of skill in the art are used to
generate the vector space model. As used herein, singular
value decomposition (SVD) refers to a factorization of a real
or complex matrix in linear algebra, which is often useful in
statistics. The method by which the vector space model is
generated is a matter of design choice.

In various embodiments, term and entity features are used
for grouping and disambiguation during the ingestion and
processing of the term-document matrix. In certain embodi-
ments, semantic parse distance is used for weighting and
providing context during the ingestion and processing of the
term-document matrix. In various embodiments, predeter-
mined threshold values are used to determine rows and col-
umns that are inappropriate for a vector space model and
should be removed from the term-document matrix during its
ingestion and processing. The resulting vector space model is
then tested against a known reference vector space model,
followed by the implementation of a learning algorithm to
optimize the vector space model. In various embodiments, the
implementation of the learning algorithm optimizes term and
document features. In certain embodiments, the implementa-
tion of the learning algorithm optimizes low and high thresh-
olds for term and document pruning. In these embodiments,
the implementation of the learning algorithm will determine
which features should be used, and what level the thresholds
should be set to, which in turn can be extrapolated to other
systems. The selection of the learning algorithm that is used,
and the method by which it is used, is a matter of design
choice.
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In various embodiments, the “ground truth” implemented
by the learning algorithm includes various clusters of terms,
with each cluster having a minimum similarity threshold for
each pair-wise comparison of members within the cluster.
Likewise, each cluster has an expected range of similarity
values between members and outside values for each outside
cluster. In certain embodiments, for evaluation of a given
model, the k-squared means is on all distances from the
expected values with the lower score being a better value. As
used herein, “ground truth” refers to the accuracy of a training
set’s classification for supervised learning techniques, which
are often used in statistical models to prove or disprove
research hypotheses. The method by which the ground truth is
implemented is a matter of design choice.

The corpus of documents (e.g., unstructured documents ‘A’
302 and ‘B’ 304) are then partitioned. In various embodi-
ments, the documents in the corpus are partitioned using
existing markup or annotation information available in the
document. In certain embodiments, the documents in the
corpus are partitioned using natural language processing
(NLP). In these embodiments, the resulting partitions main-
tain hierarchical information that is inherent to their associ-
ated documents. The method by which the documents in the
corpus are partitioned is a matter of design choice, and may
include various document partitioning approaches known to
those of skill in the art.

The partition hierarchy information associated with the
documents is then processed to generate a directed graph. As
used herein, a directed graph refers to a graph, or set of nodes
connected by edges, where the edges have a direction asso-
ciated with them. Each edge of the directed graph is then
associated with a predetermined weight and type, as
described in greater detail herein. In one embodiment, a pre-
determined conceptual distance weight value is associated
with each edge of the directed graph that is shared by a parent
section and a sub-section.

As an example, the distance between title ‘A" 304 and
sections ‘Ag,;” 306, ‘Ag,” 308, and ‘Ag;’ 310 may be consid-
ered conceptually close. As a result, the corresponding dis-
tance metrics 316, 318, and 320 may all be assigned a con-
ceptual distance weight value of ‘0.9, making each of each of
the sections ‘Ag,” 306, ‘A’ 308, and ‘A’ 310 weighted
equally against the title ‘A;” 304. In another embodiment, a
predetermined conceptual distance weight value is associated
with each edge of the directed graph that is shared by a
predetermined section in a first document and a predeter-
mined section in a second document.

To continue the preceding example, section ‘Ag,” 308 in
unstructured document ‘A’ 302 is linked 342 to section ‘Bg,’
326 of unstructured document ‘B’ 322. Those of skill in the art
will realize that such a link 342 typically implies synonymous
concepts. Accordingly, section ‘B, > 326 may effectively be a
conceptual expansion of the content contained in section
‘As,” 308, similar to an acronym expansion. As a result, a
weighted edge between the title ‘A’ 304 and section ‘B’
326, represented by distance metric 344, may be assigned a
conceptual distance weight value of ‘0.9’, thereby giving it
equal weight against sections ‘Ag,’ 306, ‘Ag,’ 308, and ‘A’
310.

In yet another embodiment, a predetermined conceptual
distance weight value is associated with each edge of the
directed graph that is shared by sub-sections (e.g., sections
‘Ag,” 306, ‘A’ 308, and ‘A5’ 310) in a document that share
the same parent section (e.g., title ‘A;” 304). In various
embodiments, the document (e.g., unstructured documents
‘A’ 302 and ‘B’ 304) does not have to be partitioned by
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sub-section. In these embodiments, any partitioning scheme
may be used, such as words, sentences, some sub-tree of a
grammar phrase, and so forth.

Likewise, section ‘A,” 308 and section ‘Bg;’ 330 of docu-
ment ‘B’ 304 may have an identical word or phrase that are
not linked 346. Accordingly, the two identical words or
phrases can be assumed to be related, but perhaps not as
closely as the two previous examples. As a result, an edge can
be established between them with a conceptual distance
weight value of ‘0.5°. Likewise, if the related concepts are not
identical, but only synonymous and not identical, and found
in section ‘Ag,” 308 and section ‘Bg;” 330, the conceptual
distance weight may have a value of “0.2”. In various embodi-
ments, conceptual distance weight values are adjusted fur-
ther, based upon issues like ambiguity. Skilled practitioners
of the art will realize that many such embodiments are pos-
sible and the foregoing is not intended to limit the spirit, scope
or intent of the invention.

The corpus of documents is then searched for passages. In
various embodiments, initial passages are found through the
implementation of search indexes familiar to those of skill in
the art. In these embodiments, the indexes for each passage
may include contextualized information gained through
inheritance to improve initial passage search results. In cer-
tain embodiments, additional passages are found and
weighted, based upon their conceptual distance from the ini-
tial passages that were found. In various embodiments, the
search results are improved by using the conceptual distance
of the additional passages to find passages in other docu-
ments.

Alignment and relevance scores are then used, as described
in greater detail herein, to score the passages, based upon a
predetermined question and its corresponding answer. As an
example, given a search term ‘R’ that matches title ‘A’ 304,
conceptual distance weight values of ‘1.0° are returned for
‘A7 304,097, 0.9’ for Ag,° 306, <0.9” for ‘Ag,” 308, ‘0.9 for
‘A’ 310, ‘0.9’ for ‘Bg,” 326, 0.5’ for ‘Bg,” 330, and ‘0.2” for
‘Bg,” 332. In certain embodiments, this weighted index is
adjusted with incremental updates to the corpus. In certain
embodiments, the alignment and relevance scores for small
child sections are improved through the use of inherited infor-
mation resulting from the various conceptual distance opera-
tions described in greater detail herein.

FIG. 4 is a generalized flowchart of vector space model
operations performed in accordance with an embodiment of
the invention. In this embodiment, vector space model opera-
tions are begun in step 402, followed by the selection of a
target corpus of files in step 404. In various embodiments, the
target corpus of files is selected from a set of one or more flat
files that have been generated by processing one or more
unstructured documents.

Known sentence boundary disambiguation (SBD)
approaches are then used in step 406 to break the target corpus
of files into individual sentences. Contiguous sentences
resulting from the operations performed in step 406 are then
grouped into documents in step 408. In various embodiments,
the grouping is performed using a predetermined, uniform
document length. In certain embodiments, as described in
greater detail herein, conceptual distance is preserved in the
resulting documents by inheriting information from parent
sections.

The documents resulting from the operations performed in
step 408 are then processed to generate associated metadata.
In various embodiments, the associated metadata may
include the number of sentences, the number of paragraphs,
the number of text segments larger than a paragraph (e.g., a
section), the number of topics, the number of terms, or some
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combination thereof. In certain embodiments, the method by
which the topics are extracted, and the number of terms that
are extracted, is a matter of design choice. The metadata
generated in step 410 is then respectively associated with its
corresponding document in step 412. Then, in step 414, each
document is parsed to generate a corresponding parse tree.
Named entities are then identified within each document and
merged into its corresponding parse tree in step 414.

Then in step 418, synsets are identified and resolved for
nodes in each parse tree. In various embodiments, the synsets
are identified and resolved through the implementation of an
external resource, such as WordNet. Terms are then identified
in step 420 as nodes in each parse tree, along with associated
distinguishing factors, such as its part of speech, lemma, and
synset. The terms identified in step 420 are then used in step
422 to generate a term-document matrix. In various embodi-
ments, the distinguishing factors of the terms identified in
step 420 are used in counting operations to generate the
term-document matrix. In certain embodiments, inter-term
counts are added, using inverted parse tree distance to main-
tain the relevance of contextual co-occurrences. In these
embodiments, each cell in the term-document matrix will
have the number of occurrences of the term in that document.
In various embodiments, the document list includes an entry
for each term to account for co-occurrences.

In certain embodiments, a genetic algorithm is imple-
mented to optimize various features and values to determine
an optimal term-document matrix generation method. In vari-
ous embodiments, the genetic algorithm is implemented to
manipulate various values for additional term-document
matrix generation iterations. In these embodiments, the vari-
ous values may include which entity features are ingested and
processed when generating a space vector model, the weight-
ing of semantic distance, high and low threshold values for
pruning (i.e., eliminating) rows and columns, or some com-
bination thereof.

The term-document matrix is then cleaned in step 424. In
various embodiments, the cleaning of the term-document
includes ensuring that the sum of any row is set to not exceed
a predetermined maximum threshold number of stop words,
and is likewise set to not fall below a predetermined minimum
threshold number of terms that have no impact. In certain
embodiments, the cleaning includes removing any columns
having more than a maximum, or less than a minimum, num-
ber of values. In various embodiments, duplicate columns are
identified and only one is retained.

The cleaned term-document matrix is then ingested and
processed in step 426 to generate a vector space model. In
various embodiments, term and entity features are used for
grouping and disambiguation during the ingestion and pro-
cessing of the term-document matrix. In certain embodi-
ments, semantic parse distance is used for weighting and
providing context during the ingestion and processing of the
term-document matrix. In various embodiments, predeter-
mined threshold values are used to remove rows and columns
from the term-document matrix during its ingestion and pro-
cessing that are determined to be inappropriate for a vector
space model.

The resulting vector space model is then tested against a
known reference vector space model in step 428, followed by
the implementation of a learning algorithm to optimize the
vector space model. In various embodiments, the implemen-
tation of the learning algorithm optimizes term and document
features. In certain embodiments, the implementation of the
learning algorithm optimizes low and high thresholds for
term and document pruning (i.e., eliminating). In these
embodiments, the implementation of the learning algorithm
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will determine which features should be used, and what level
the thresholds should be set to, which in turn can be extrapo-
lated to other systems.

In various embodiments, the ground truth implemented by
the learning algorithm includes various clusters of terms, with
each cluster having a minimum similarity threshold for each
pair-wise comparison of members within the cluster. Like-
wise, each cluster has an expected range of similarity values
between members and outside values for each outside cluster.
In certain embodiments, for evaluation of a given model, the
k-squared means is on all distances from the expected values
with the lower score being a better value. Vector space model
operations are then ended in step 432.

FIG. 5 is a generalized flowchart of conceptual distance
preservation operations performed in accordance with an
embodiment of the invention. In this embodiment, conceptual
distance preservation operations are begun in step 502, fol-
lowed by the selection of a corpus of documents in step 504,
which are in turn partitioned in step 506. In various embodi-
ments, the documents in the corpus are partitioned using
existing markup or annotation information available in the
document. In certain embodiments, the documents in the
corpus are partitioned using natural language processing
(NLP). In these embodiments, the resulting partitions main-
tain hierarchical information that is inherent to their associ-
ated documents. The method by which the documents in the
corpus are partitioned is a matter of design choice, and may
include various document partitioning approaches known to
those of skill in the art.

The partition hierarchy information associated with the
documents is then processed in step 508 to generate a directed
graph. As used herein, a directed graph refers to a graph, or set
of' nodes connected by edges, where the edges have a direc-
tion associated with them. Each edge of the directed graph is
then associated with a predetermined weight and type in step
510, as described in greater detail herein. In one embodiment,
a predetermined conceptual distance weight value is associ-
ated with each edge of the directed graph that is shared by a
parent section and a sub-section. In another embodiment, a
predetermined conceptual distance weight value is associated
with each edge of the directed graph that is shared by a
predetermined section in a first document and a predeter-
mined section in a second document. In yet another embodi-
ment, a predetermined conceptual distance weight value is
associated with each edge of the directed graph that is shared
by sub-sections in a document that share the same parent
section. Skilled practitioners of the art will realize that many
such embodiments are possible and the foregoing is not
intended to limit the spirit, scope or intent of the invention.

The corpus of documents is then searched for passages in
step 512. In various embodiments, initial passages are found
through the implementation of search indexes familiar to
those of skill in the art. In these embodiments, the indexes for
each passage may include contextualized information gained
through inheritance to improve initial passage search results.
In certain embodiments, additional passages are found and
weighted, based upon their conceptual distance from the ini-
tial passages that were found. In various embodiments, the
search results are improved by using the conceptual distance
of the additional passages to find passages in other docu-
ments.

Alignment and relevance scores are then used, as described
in greater detail herein, to score the passages in step 514,
based upon a predetermined question and its corresponding
answer. In certain embodiments, the alignment and relevance
scores for small child sections are improved through the use
of inherited information resulting from the various concep-
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tual distance operations described in greater detail herein.
Conceptual distance preservation operations are then ended
in step 516.

Although the present invention has been described in
detail, it should be understood that various changes, substi-
tutions and alterations can be made hereto without departing
from the spirit and scope of the invention as defined by the
appended claims.

What is claimed is:

1. A system comprising:

a processor;

a data bus coupled to the processor; and

a computer-usable medium embodying computer program

code, the computer-usable medium being coupled to the

data bus, the computer program code used for charac-

terizing content of documents by conceptual relation-

ships and comprising instructions executable by the pro-

cessor and configured for:

applying natural language processing (NLP) to content
in a plurality of documents to identify topics and
subjects;

applying analytic analysis to the topics and subjects to
identify a conceptual relationship of the content in the
plurality of documents;

partitioning the content in each of the plurality of docu-
ments into a first structured hierarchy, preserving at
least one structure in each document inherent in the
each document; and

providing access to content through a first index based
upon utilizing the first structured hierarchy and
through a second index utilizing a second structured
hierarchy; and wherein

the content is characterized by optimizing a vector space
model representation of the documents, the optimiza-
tion performed by a system capable of answering
questions, where:

the content from the plurality of documents is ingested
by the system;

natural language processing is applied to the content in
the plurality of documents to identify terms, topics,
subjects and concepts;

the content is partitioned according to a semantic parse
distance to identify a context for partitioned content;

the content and context is represented, by the system,
utilizing a vector space model;

entries in the vector space model are eliminated based on
a difference criteria; and

an iterative genetic algorithm is applied to optimize fea-
tures of the vector space model.

2. The system of claim 1, wherein:

the conceptual relationship is based upon a directed graph

with weights based upon a similarity and a distance
based upon concepts.

3. The system of claim 1, wherein:

the distance is based upon a topic hierarchy.

4. The system of claim 1, wherein:

a ground truth is an optimized feature.

5. The system of claim 4, wherein:

the genetic algorithm determines which features are used

during the ingesting and has weighting based on seman-
tic distance.

6. A non-transitory, computer-readable storage medium
embodying computer program code, the computer program
code comprising computer executable instructions config-
ured for:

applying natural language processing (NLP)to contentina

plurality of documents to identify topics and subjects;
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applying analytic analysis to the topics and subjects to
identify a conceptual relationship of the content in the
plurality of documents;

partitioning the content in each of the plurality of docu-
ments into a first structured hierarchy, preserving at least
one structure in each document inherent in the each
document; and

providing access to content through a first index based
upon utilizing the first structured hierarchy and through
a second index utilizing a second structured hierarchy;
and wherein

the content is characterized by optimizing a vector space
model representation of the documents, the optimization
performed by a system capable of answering questions,
where:

the content from the plurality of documents is ingested by
the system;

natural language processing is applied to the content in the
plurality of documents to identify terms, topics, subjects
and concepts;

the content is partitioned according to a semantic parse
distance to identify a context for partitioned content;

the content and context is represented, by the system, uti-
lizing a vector space model;

entries in the vector space model are eliminated based on a
difference criteria; and
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an iterative genetic algorithm is applied to optimize fea-

tures of the vector space model.

7. The non-transitory, computer-readable storage medium
of claim 6, wherein:

the conceptual relationship is based upon a directed graph

with weights based upon a similarity and a distance
based upon concepts.

8. The non-transitory, computer-readable storage medium
of claim 6, wherein:

the distance is based upon a topic hierarchy.

9. The non-transitory, computer-readable storage medium
of claim 6, wherein:

a ground truth is an optimized feature.

10. The non-transitory, computer-readable
medium of claim 9, wherein:

the genetic algorithm determines which features are used

during the ingesting and has weighting based on seman-
tic distance.

11. The non-transitory, computer-readable storage
medium of claim 6, wherein the computer executable instruc-
tions are deployable to a client system from a server system at
a remote location.

12. The non-transitory, computer-readable storage
medium of claim 6, wherein the computer executable instruc-
tions are provided by a service provider to a user on an
on-demand basis.

storage



